Algoritmiese Trading System Architecture Voorheen op hierdie blog ek oor die konseptuele argitektuur van 'n intelligente algoritmiese handel stelsel asook die funksionele en nie-funksionele vereistes van 'n produksie algoritmiese handel stelsel geskryf. Sedertdien het ek ontwerp het 'n stelsel-argitektuur wat ek glo kan voldoen aan diegene argitektoniese vereistes. In hierdie pos sal ek die argitektuur na aanleiding van die riglyne van die ISO / IEC / IEEE 42010 stelsels en sagteware-ingenieurswese argitektuur beskrywing standaard beskryf. Volgens hierdie standaard n argitektuur beskrywing moet: Bevat verskeie gestandaardiseerde argitektoniese sienings (bv in UML) en in stand te hou naspeurbaarheid tussen ontwerp besluite en argitektoniese vereistes sagteware argitektuur definisie Daar is steeds geen konsensus oor wat 'n stelsels argitektuur is. In die konteks van hierdie artikel, is dit gedefinieer as die infrastruktuur waarbinne aansoek komponente wat funksionele vereistes voldoen kan word vermeld, ontplooi, en uitgevoer word. Funksionele vereistes is die verwagte funksies van die stelsel en sy komponente. Nie-funksionele vereistes is maatreëls waardeur die kwaliteit van die stelsel gemeet kan word. 'N Stelsel wat ten volle voldoen aan die funksionele vereistes kan steeds nie na wense as funksionele vereistes ontevrede gelaat. Om te illustreer hierdie konsep beskou die volgende scenario: 'n algoritmiese handel stelsel wat jy nou net gekoop het / gebou maak uitstekende handel besluite te neem, maar is heeltemal in onbruik met die organisasies risikobestuur en rekeningkundige stelsels. Sou hierdie stelsel voldoen aan jou verwagtinge Konseptuele Architecture 'n konseptuele siening beskryf hoë vlak konsepte en meganismes wat bestaan in die stelsel op die hoogste vlak van korrelig. Op hierdie vlak, die algoritmiese handel stelsel volg 'n gebeurtenis gedrewe argitektuur (EDA) oopgebreek oor vier lae, en twee argitektoniese aspekte. Vir elke laag en aspek verwys argitekture en patrone gebruik. Argitektoniese patrone bewys, generiese strukture vir die bereiking van spesifieke vereistes. Argitektoniese aspekte is kruissnydende kommer wat verskeie komponente span. Gebeurtenis gedrewe argitektuur - 'n argitektuur wat produseer, bespeur, verbruik, en reageer op gebeure. Gebeure sluit in reële tyd mark bewegings, komplekse gebeure of tendense, en handel gebeure bv indiening van 'n bevel. Hierdie diagram illustreer die konseptuele argitektuur van die algoritmiese handel stelsel Verwysing architecture 'n analogie te gebruik, 'n verwysing argitektuur is soortgelyk aan die bloudrukke vir 'n lasdraende muur. Dit bloudruk kan weer gebruik word vir verskeie bou-ontwerpe ongeag wat gebou is gebou as dit voldoen aan 'n stel algemeen voorkom vereistes. Net so, 'n verwysing argitektuur definieer 'n sjabloon bevat generiese strukture en meganismes wat gebruik kan word om 'n konkrete sagteware argitektuur wat spesifieke vereistes voldoen te bou. Die argitektuur vir die algoritmiese handel stelsel gebruik 'n ruimte gebaseerde argitektuur (SBA) en 'n model oog kontroleerder (MVC) as verwysings. Goeie praktyke soos die operasionele data stoor (ODS), die uittreksel te transformeer en vrag (ETL) patroon, en 'n datapakhuis (DW) word ook gebruik. Model oog kontroleerder - 'n patroon wat die voorstelling van inligting van die gebruikers interaksie met hulle skei. Ruimte gebaseerde argitektuur - spesifiseer 'n infrastruktuur waar losweg gekoppel verwerking eenhede met mekaar deur middel van 'n gedeelde assosiatiewe geheue genoem ruimte (sien onder). Strukturele View Die strukturele siening van 'n argitektuur toon die komponente en sub-komponente van die algoritmiese handel stelsel. Dit wys ook hoe hierdie komponente is ontplooi op fisiese infrastruktuur. Die UML diagramme in hierdie siening sluit komponent diagramme en ontplooiing diagramme. Hier is 'n gallery van die ontplooiing diagram van die algehele algoritmiese handel stelsel en die verwerking eenhede in die SBA verwysing argitektuur, asook verwante komponent diagramme vir elkeen die lae. Argitektoniese Tactics Volgens die sagteware-ingenieurswese Instituut 'n argitektoniese taktiek is 'n manier te bevredig 'n vereiste gehalte deur die manipulering een of ander aspek van 'n gehalte kenmerk model deur middel van argitektoniese ontwerp besluite te neem. 'N Eenvoudige voorbeeld gebruik word in die algoritmiese handel stelsel argitektuur manipuleer 'n operasionele data stoor (ODS) met 'n deurlopende bevraagteken komponent. Hierdie komponent sal voortdurend analiseer die ODS te identifiseer en te onttrek komplekse gebeure. Die volgende taktiek gebruik word in die argitektuur: die disruptor patroon in die geval en orde toue gedeelde geheue vir die geleentheid en orde toue Deurlopende bevraagteken taal (CQL) op die ODS Data filter met die filter ontwerp patroon op inkomende data Opeenhoping vermyding algoritmes op alle inkomende en uitgaande verbindings Active tou bestuur (AQM) en eksplisiete opeenhoping kennisgewing Commodity rekenaar hulpbronne met kapasiteit vir opgradering (skaalbare) Active ontslag vir al enkele punte van mislukking Indexatie en optimale volharding strukture in die ODS Skeduleer gereelde data rugsteun en skoon-up skrifte vir ODS transaksie geskiedenis op alle databasisse checksums vir alle bestellings op te spoor foute Annoteer gebeure met tyd tempel te verjaar gebeure slaan Bestel validering reëls bv maksimum handel hoeveelhede outomatiese handelaar komponente gebruik 'n in-geheue databasis vir ontleding Twee stadium verifikasie vir gebruikerkoppelvlakke verbinding met die TGT Enkripsie op gebruikerkoppelvlakke en verbindings na die TGT Observer ontwerp patroon vir die MVC om menings te bestuur Bogenoemde lys is net 'n paar ontwerp besluite wat ek geïdentifiseer tydens die ontwerp van die argitektuur. Dit is nie 'n volledige lys van taktiek. As die stelsel word ontwikkel bykomende taktiek moet in diens geneem word oor verskeie vlakke van korrelig om funksionele en nie-funksionele vereistes te voldoen. Hieronder is drie diagramme beskryf die disruptor ontwerp patroon, filter ontwerp patroon, en die voortdurende bevraagtekening komponent. Gedragswetenskappe Sien die lig van 'n argitektuur wys hoe die komponente en lae moet in wisselwerking met mekaar. Dit is sinvol as die skep van scenario's vir die toets van argitektuur ontwerp en vir die begrip van die stelsel van end-tot-end. Hierdie siening bestaan uit volgorde diagramme en aktiwiteite diagramme. Aktiwiteit diagramme toon die algoritmiese handel stelsels interne proses en hoe handelaars is veronderstel om met die algoritmiese handel stelsel word hieronder getoon. Tegnologie en raamwerke Die finale stap in die ontwerp van 'n sagteware-argitektuur is om potensiële tegnologie en raamwerke wat gebruik kan word om die argitektuur te besef identifiseer. As 'n algemene beginsel is dit beter om te hefboom af van bestaande tegnologie, met dien verstande dat hulle voldoende bevredig beide funksionele en nie-funksionele vereistes. 'N Raamwerk is 'n besef verwysing argitektuur bv JBoss is 'n raamwerk wat die JEE verwysing argitektuur besef. Die volgende tegnologie en raamwerke is interessant en moet in ag geneem word wanneer die uitvoering van 'n algoritmiese handel stelsel: CUDA - NVidia het 'n aantal produkte wat 'n hoë werkverrigting rekenaar Finansies modellering ondersteun. 'N Mens kan bereik tot 50x prestasie verbeterings in die bestuur van Monte Carlo simulasies op die GPU in plaas van die CPU. Apache River - River is 'n instrument-kit wat gebruik word om verspreide stelsels te ontwikkel. Dit is gebruik as 'n raamwerk vir die bou van toepassings gebaseer op die SBA patroon Apache Hadoop - in die geval dat deurdringende meld is 'n vereiste, dan is die gebruik van Hadoop bied 'n interessante oplossing vir die groot-data probleem. Hadoop ontplooi kan word in 'n cluster omgewing ondersteun CUDA tegnologie. AlgoTrader - 'n open source algoritmiese handel platform. AlgoTrader kan potensieel ontplooi in die plek van die outomatiese handelaar komponente. FIX Engine - 'n selfstandige toepassing wat die Finansiële Information Exchange (FIX) protokolle insluitend FIX ondersteun, vinnig, en FIXatdl. Terwyl nie 'n tegnologie of 'n raamwerk, moet komponente word gebou met 'n aansoek Programming Interface (API) om interoperabiliteit van die stelsel en sy komponente te verbeter. Ten slotte Die voorgestelde argitektuur is ontwerp om baie generiese vereistes geïdentifiseer vir algoritmiese handel stelsels te bevredig. Oor die algemeen algoritmiese handel stelsels is bemoeilik deur drie faktore wat wissel met elke uitvoering: Afhanklike gebiede op eksterne onderneming en ruil stelsels Uitdaag-funksionele vereistes en veranderende argitektoniese beperkings Die voorgestelde sagteware argitektuur sou dus moet word aangepas op 'n geval-tot-geval grondslag ten einde om spesifieke organisatoriese en regulatoriese vereistes voldoen, asook aan die plaaslike beperkings te oorkom. Die algoritmiese handel stelsel argitektuur moet gesien word as net 'n punt van verwysing vir individue en organisasies wat hul eie algoritmiese handel stelsels te ontwerp. Vir 'n volledige kopie en bronne wat gebruik gaan aflaai 'n afskrif van my verslag. Dankie. TagsBest Programmering taal vir Algorithmic Trading Systems Deur Michael Saal-Moore op 26 Julie 2013 Een van die mees algemene vrae wat ek ontvang in die QS Koevert is Wat is die beste programmeertaal vir algoritmiese handel. Die kort antwoord is dat daar geen beste taal. Strategie parameters, prestasie, modulariteit, ontwikkeling, veerkragtigheid en koste moet al oorweeg. In hierdie artikel sal uiteensetting van die nodige komponente van 'n algoritmiese handel stelsel argitektuur en hoe besluite oor die implementering invloed op die keuse van taal. Eerstens, sal die belangrikste komponente van 'n algoritmiese handel stelsel in ag geneem word, soos die navorsing gereedskap, portefeulje-optimaliseerder, risikobestuurder en uitvoering enjin. Daarna sal verskillende handel strategieë ondersoek word en hoe hulle invloed op die ontwerp van die stelsel. In die besonder die frekwensie van die saak en die waarskynlike handel volume sal beide bespreek word. Sodra die handel strategie gekies is, is dit nodig om argitek die hele stelsel. Dit sluit in die keuse van hardeware, die bedryfstelsel (s) en stelsel veerkragtigheid teen seldsame, potensieel katastrofiese gebeure. Terwyl die argitektuur oorweeg word, moet daar behoorlik ag gegee word aan prestasie - beide om die navorsing gereedskap sowel as die lewendige uitvoering omgewing. Wat is die handel stelsel probeer om te doen voordat jy besluit op die beste taal waarmee 'n outomatiese handel stelsel is dit nodig om die vereistes te definieer skryf. Is die stelsel gaan suiwer uitvoering gebaseer Sal die stelsel vereis dat 'n risikobestuur of portefeulje konstruksie kursus sal die stelsel vereis dat 'n hoë-prestasie backtester Vir die meeste strategieë die handel stelsel kan verdeel word in twee kategorieë wees: Navorsing en sein generasie. Navorsing handel oor evaluering van 'n strategie prestasie oor historiese data. Die proses van evaluering van 'n handel strategie oor data voor mark staan bekend as back testing. Die grootte van data en algoritmiese kompleksiteit sal 'n groot impak op die rekenaarmatige intensiteit van die backtester het. CPU spoed en samelopendheid is dikwels die beperkende faktore in die optimalisering van uitvoering navorsing spoed. Sein generasie is gemoeid met die opwekking van 'n stel van handel seine van 'n algoritme en sulke bestellings stuur na die mark, gewoonlik deur 'n makelaar. Vir sekere strategieë 'n hoë vlak van prestasie vereis. I / O kwessies soos netwerk bandwydte en latency is dikwels die beperkende faktor in die optimalisering van die uitvoering stelsels. So die keuse van tale vir elke komponent van jou hele stelsel kan heel anders wees. Tipe, frekwensie en volume van Strategie Die tipe algoritmiese strategie in diens sal 'n aansienlike impak op die ontwerp van die stelsel het. Dit sal nodig wees om te oorweeg die markte verhandel word, die konneksie na eksterne data verskaffers, die frekwensie en volume van die strategie, die kompromis tussen gemak van ontwikkeling en verbetering van die prestasie, sowel as enige persoonlike hardeware, insluitend mede geleë persoonlike bedieners, GPU's of FPGAs wat nodig mag wees. Die tegnologie keuses vir 'n lae-frekwensie Amerikaanse aandele strategie sal grootliks verskil van dié van 'n hoë-frekwensie statistiese arbitrage strategie handel oor die termynmark wees. Voor die keuse van taal baie data verskaffers moet geëvalueer alledaagse n strategie aan die hand. Dit sal nodig wees om verbinding met die verkoper, struktuur van enige APIs, tydigheid van die data, bergingsvereistes en veerkragtigheid te oorweeg in die lig van 'n ondernemer gaan af. Dit is ook wys om 'n vinnige toegang tot verskeie verskaffers in besit te neem Verskeie instrumente almal hul eie stoor eienaardighede, voorbeelde van wat insluit verskeie ENKELE simbole vir aandele en verval datums vir Toekomsnavorsing (nie aan enige spesifieke OTC data te noem). Dit moet ingereken in die platform ontwerp. Frekwensie van strategie is waarskynlik een van die grootste oorsake van hoe die tegnologie stapel sal gedefinieer word nie. Strategieë in diens data meer dikwels as fyn of tweedens bars vereis betekenisvolle ag met betrekking tot prestasie. 'N Strategie oorskry tweedens bars (bv merk data) lei tot 'n prestasiegedrewe ontwerp as die primêre vereiste. Vir 'n hoë frekwensie strategieë 'n aansienlike bedrag van die mark data sal moet word gestoor en geëvalueer. Sagteware soos HDF5 of KDB word algemeen gebruik vir hierdie rolle. Met die oog op die uitgebreide volumes van data wat nodig is vir HFT aansoeke te verwerk, moet 'n groot skaal new backtester en uitvoering stelsel gebruik word. C / C (moontlik met 'n paar assembler) is geneig om die sterkste taal kandidaat. Ultrahoëfrekwensie strategieë sal ongetwyfeld vereis persoonlike hardeware soos FPGAs, ruil mede-plek en kernal / netwerk koppelvlak tuning. Navorsing Systems Research stelsels tipies behels 'n mengsel van interaktiewe ontwikkeling en outomatiese script. Die voormalige vind dikwels plaas in 'n IDE soos Visual Studio, Matlab of R Studio. Laasgenoemde behels uitgebreide numeriese berekeninge oor talle parameters en data punte. Dit lei tot 'n taalkeuse verskaffing van 'n eenvoudige omgewing te toets kode, maar bied ook voldoende prestasie om strategieë oor verskeie parameter dimensies evalueer. Tipiese Ides in hierdie ruimte sluit Microsoft Visual C / C, wat uitgebreide ontfouting nuts,-kode voltooiing vermoëns bevat (via IntelliSense) en eenvoudige oorsigte van die hele projek stapel (via die databasis ORM, LINQ) Matlab. wat ontwerp is vir 'n uitgebreide numeriese lineêre algebra en gevectoriseerd bedrywighede, maar in 'n interaktiewe konsole wyse R Studio. wat vou die R statistiese taal konsole in 'n volwaardige IO Eclipse IDE vir Linux Java en C en semi-eiendom Ides soos Enthought Canopy vir Python, wat data-analise biblioteke soos Numpy sluit. Scipy. scikit-leer en pandas in 'n enkele interaktiewe (konsole) omgewing. Vir numeriese back testing, al die bogenoemde tale is geskik, maar dit is nie nodig om 'n GUI / IDE gebruik as die kode in die agtergrond sal uitgevoer word. Die eerste oorweging in hierdie stadium is dat van die uitvoering spoed. A saamgestel taal (soos C) is dikwels nuttig as die back testing parameter dimensies is groot. Onthou dat dit nodig versigtig vir sulke stelsels te wees is as wat die saak gevolge het verduidelik tale soos Python dikwels gebruik van 'n hoë-prestasie biblioteke soos Numpy / pandas vir die back testing stap maak, ten einde 'n redelike mate van mededingendheid te behou met saamgestel ekwivalente. Uiteindelik is die wat gekies is vir die back testing taal sal bepaal word deur spesifieke algoritmiese behoeftes sowel as die verskeidenheid van biblioteke beskikbaar in die taal (meer op wat hieronder). Tog kan die taal wat gebruik word vir die backtester en navorsing omgewings heeltemal onafhanklik van dié wat in die portefeulje konstruksie, risikobestuur en uitvoering komponente, soos gesien sal word. Portefeulje Konstruksie en Risikobestuur Die portefeulje konstruksie en risikobestuur komponente word dikwels oor die hoof gesien deur kleinhandel algoritmiese handelaars. Dit is byna altyd 'n fout. Hierdie gereedskap verskaf die meganisme waardeur kapitaal sal bewaar word. Hulle het nie net probeer om die aantal riskant verbintenis te verlig, maar ook hulself te verminder kansellasies van die ambagte, die vermindering van transaksiekoste. Gesofistikeerde weergawes van hierdie komponente kan 'n beduidende invloed op die gehalte en consistentcy van winsgewendheid het. Dit is maklik om 'n stabiele strategieë as die portefeulje konstruksie meganisme en risikobestuurder skep kan maklik aangepas word om verskeie stelsels te hanteer. So moet hulle in aanmerking kom essensiële komponente aan die begin van die ontwerp van 'n algoritmiese handel stelsel. Die werk van die portefeulje konstruksie stelsel is om 'n stel van gewenste ambagte te neem en te produseer die stel van die werklike ambagte wat kansellasies te verminder, blootstelling aan verskeie faktore (soos sektore, bateklasse, wisselvalligheid ens) in stand te hou en te optimaliseer die toekenning van kapitaal na verskeie strategieë in 'n portefeulje. Portefeulje konstruksie verminder dikwels 'n lineêre algebra probleem (soos 'n matriks faktorisering) en vandaar prestasie is hoogs afhanklik van die doeltreffendheid van die numeriese lineêre algebra implementering beskikbaar. Gemeenskaplike biblioteke sluit uBLAS. LAPACK en NAG vir C. MatLab beskik ook op groot skaal new matriksbewerkings. Python gebruik Numpy / Scipy vir sulke berekeninge. 'N gereeld herbalanseer portefeulje sal 'n saamgestel (en goed new) matriks biblioteek vereis dat hierdie stap uit te voer, sodat dit nie die handel stelsel knelpunt. Risikobestuur is 'n ander baie belangrike deel van 'n algoritmiese handel stelsel. Risiko kan kom in baie vorms: Groter wisselvalligheid (hoewel dit as wenslik vir sekere strategieë kan gesien word), verhoogde korrelasies tussen bateklasse, teenparty verstek bediener kragonderbrekings, Black Swan gebeure en ongemerk foute in die handel kode, te noem 'n paar. Risikobestuur komponente probeer antisipeer die gevolge van oormatige wisselvalligheid en korrelasie tussen bateklasse en hul daaropvolgende effek (s) op die handel kapitaal. Dikwels is dit verminder tot 'n stel van statistiese berekeninge soos Monte Carlo stres toetse. Dit is baie soortgelyk aan die computational behoeftes van 'n afgeleide pryse enjin en as sodanig sal CPU-gebonde wees. Hierdie simulasies is hoogs parallelisable (sien onder), en 'n sekere mate, is dit moontlik om die hardeware te gooi by die probleem. Uitvoering Systems Die werk van die uitvoering stelsel is om gefiltreer handel seine van die portefeulje konstruksie en risikobestuur komponente ontvang en stuur hulle oor na 'n makelaar of 'n ander manier van toegang tot die mark. Vir die meerderheid van die kleinhandel algoritmiese handel strategieë behels dit 'n API of FIX verbinding met 'n makelaars soos Interaktiewe Brokers. Die primêre oorwegings wanneer jy moet besluit op 'n taal insluit gehalte van die API, taal-wrapper beskikbaarheid vir 'n API, uitvoering frekwensie en die verwagte glip. Die kwaliteit van die API verwys na hoe goed gedokumenteer is dit, watter soort prestasie dit bied, of dit moet selfstandige sagteware te verkry of 'n poort vasgestel kan word in 'n onthoofde mode (dit wil sê geen GUI). In die geval van Interaktiewe Brokers, die Trader WorkStation instrument moet hardloop in 'n GUI omgewing ten einde toegang tot hul API. Een keer het ek 'n lessenaar Ubuntu uitgawe installeer op 'n wolk bediener Amazon toegang Interaktiewe Brokers afstand, suiwer vir hierdie rede waarom die meeste API sal 'n C en / of Java koppelvlak verskaf. Dit is gewoonlik tot die gemeenskap te taalspesifieke omhulsels vir C, Python, R, Excel en MatLab ontwikkel. Let daarop dat met elke bykomende plugin gebruik (veral API omhulsels) is daar ruimte vir foute insluip in die stelsel. toets altyd plugins van hierdie soort en verseker dat hulle aktief in stand gehou. 'N waardevolle meter is om te sien hoeveel nuwe updates vir 'n kodebasis is gemaak in die afgelope maande. Uitvoering frekwensie is van die uiterste belang in die uitvoering algoritme. Let daarop dat honderde bestellings elke minuut kan gestuur word en as sodanig prestasie is van kritieke belang. Glip aangegaan sal word deur middel van 'n erg-presterende uitvoering stelsel en dit sal 'n dramatiese impak op winsgewendheid het. Staties-getik tale (sien onder) soos C / Java is oor die algemeen 'n optimale vir uitvoering maar daar is 'n trade-off in die ontwikkeling tyd, toetsing en gemak van die onderhoud. Dinamiese-getik tale, soos Python en Perl is nou algemeen vinnig genoeg. Maak altyd seker dat die komponente is ontwerp om in 'n modulêre wyse (sien onder), sodat hulle kan omgeruil uit die stelsel skale. Argitektoniese beplanning en ontwikkelingsproses Die komponente van 'n handel stelsel, die frekwensie en volume vereistes wat hierbo bespreek is, maar stelsel infrastruktuur het nog gedek moet word. Diegene wat optree as 'n kleinhandel handelaar of besig om in 'n klein fonds sal waarskynlik dra baie regeer. Dit sal die finale implementering van die stelsel wat nodig is om te wees wat die alfa model, risikobestuur en uitvoering parameters wees, en ook. Voordat delf in spesifieke tale die ontwerp van 'n optimale stelsel argitektuur bespreek sal word. Skeiding van Kommer Een van die belangrikste besluite wat by die begin moet word, is hoe om die belange van 'n handel stelsel te skei. In die ontwikkeling van sagteware, beteken dit in wese hoe om op te breek die verskillende aspekte van die handel stelsel in aparte modulêre komponente. Deur bloot koppelvlakke by elk van die komponente is dit maklik om te ruil uit dele van die stelsel vir ander weergawes wat prestasie hulp, betroubaarheid of onderhoud, sonder om die wysiging enige eksterne afhanklikheid kode. Dit is die beste praktyk vir sulke stelsels. Vir strategieë teen laer frekwensies sulke praktyke word aangeraai. Vir ultra hoë frekwensie handel die reëlboek mag hê om dit te ignoreer ten koste van die opstel van die stelsel vir nog meer prestasie. 'N Meer styf gekoppel stelsel wat wenslik mag wees. Die skep van 'n komponent kaart van 'n algoritmiese handel stelsel is 'n artikel op sigself die moeite werd. Maar 'n optimale benadering is om seker te maak daar is afsonderlike komponente vir die historiese en real-time mark data insette, data stoor, toegang tot die inligting API, backtester, strategie parameters, portefeulje konstruksie, risikobestuur en outomatiese uitvoering stelsels. Byvoorbeeld, as die data stoor wat gebruik is tans onderpresteer, selfs teen beduidende vlakke van optimalisering, kan dit omgeruil met 'n minimale herskryf om die data inname of toegang data-API. Sover die as backtester en daaropvolgende komponente betref, is daar geen verskil. Nog 'n voordeel van vervreem komponente is dat dit kan 'n verskeidenheid van programmeertale wat gebruik word in die algehele stelsel. Daar is geen rede om te beperk tot 'n enkele taal as die kommunikasie metode van die komponente is taal onafhanklik. Dit sal die geval wees indien hulle kommunikeer via die TCP / IP, ZeroMQ of 'n ander taal-onafhanklike protokol. As 'n konkrete voorbeeld, kyk na die geval van 'n back testing stelsel in C vir verwerking van syfers prestasie geskryf, terwyl die portefeuljebestuurder en uitvoering stelsels in Python geskryf met behulp van Scipy en IBPy. Prestasie oorwegings prestasie is 'n belangrike oorweging vir die meeste handel strategieë. Vir hoër frekwensie strategieë is dit die belangrikste faktor. Prestasie dek 'n wye verskeidenheid van onderwerpe, soos algoritmiese uitvoering spoed, netwerk latency, bandwydte, data I / O, concurrency / parallelisme en skalering. Elkeen van hierdie gebiede word individueel gedek deur groot handboeke, so hierdie artikel sal net krap die oppervlak van elke onderwerp. Argitektuur en taalkeuse sal nou in terme van hul effek op prestasie bespreek word. Die heersende wysheid soos deur Donald Knuth. een van die vaders van Rekenaarwetenskap, is dat voortydige optimalisering is die wortel van alle kwaad. Dit is byna altyd die geval nie - behalwe wanneer die bou van 'n hoë frekwensie handel algoritme Vir diegene wat belangstel in die laer frekwensie strategieë is, 'n gemeenskaplike benadering is om 'n stelsel te bou in die eenvoudigste manier moontlik en net optimaliseer as knelpunte begin om te verskyn. Profilering gereedskap gebruik om te bepaal waar knelpunte ontstaan. Profiele gemaak kan word vir al die bogenoemde faktore, hetsy in 'n MS Windows of Linux-omgewing. Daar is baie bedryfstelsel en taal gereedskap wat beskikbaar is om dit te doen, sowel as nuts derde party. Taalkeuse sal nou in die konteks van prestasie bespreek word. C, Java, Python, R en MatLab bevat almal 'n hoë-prestasie biblioteke (hetsy as deel van hul standaard of ekstern) vir basiese datastrukture en algoritmiese werk. C skepe met die Standard Sjabloon Biblioteek, terwyl Python bevat Numpy / Scipy. Gemeenskaplike wiskundige take te vinde in hierdie biblioteke en dit is selde voordelig vir 'n nuwe implementering skryf. Een uitsondering is wanneer hoogs persoonlike hardeware argitektuur vereis en 'n algoritme maak uitgebreide gebruik van eiendom uitbreidings (soos persoonlike caches). Maar dikwels heruitvinding van die wiel afval tyd dat 'n beter bestee kan word ontwikkel en die optimalisering van ander dele van die handel infrastruktuur. Ontwikkeling tyd is uiters kosbare veral in die konteks van uitsluitlike ontwikkelaars. Latency is dikwels 'n kwessie van die uitvoering stelsel as die navorsing gereedskap gewoonlik op dieselfde masjien. Vir die eerste keer nie kan latency voorkom by verskeie plekke langs die uitvoering pad. Databasisse moet geraadpleeg word (skyf / netwerk latency), seine moet gegenereer word (bedryfstelsel firmas, kernal boodskappe latency), handel seine gestuur (NIC latency) en bestellings verwerk (ruil stelsels interne latency). Vir hoër frekwensie bedrywighede is dit nodig om intiem vertroud is met kernal optimalisering asook die optimalisering van die netwerk oordrag geword. Dit is 'n diep gebied en is aansienlik buite die bestek van die artikel, maar as 'n UHFT algoritme dan verlang bewus te wees van die diepte van kennis wat nodig is Caching is baie nuttig in die toolkit van 'n kwantitatiewe handel ontwikkelaar. Caching verwys na die konsep van die stoor gereeld besoek data op 'n wyse wat toegang hoër-prestasie kan, ten koste van die potensiële staleness van die data. 'N Algemene gebruik geval kom voor in die web-ontwikkeling by die neem van die data van 'n skyf gerugsteun relasionele databasis en sit dit in die geheue. Enige daaropvolgende versoeke vir die data het nie na die databasis en so prestasie winste kan beduidend wees getref. Vir handel situasies kan caching uiters voordelig wees. Byvoorbeeld, kan die huidige stand van 'n strategie portefeulje bewaar word in 'n kas totdat dit herbalanseer, sodanig dat die lys nie die geval is moet herskep op elke lus van die handel algoritme. Sulke wedergeboorte is geneig om 'n hoë CPU of skyf I / O werking wees. Maar kas is nie sonder sy eie sake. Herlewing van die kas data in 'n keer, as gevolg van die volatilie aard van die kas stoor, kan beduidende vraag op infrastruktuur te plaas. Nog 'n probleem is hond-hei. waar verskeie generasies van 'n nuwe kas kopie onder uiters hoë lading, wat lei tot mislukking waterval gedra. Dinamiese geheuetoekenning is 'n duur operasie in uitvoering sagteware. Dit is dus noodsaaklik vir hoër prestasie handel aansoeke om goed bewus wees hoe geheue word toegeken en deallocated tydens program vloei. Nuwer taal standaarde soos Java, C en Python al uit te voer outomatiese vullisverwydering. wat verwys na deallocation van dinamiese toegeken geheue wanneer voorwerpe uitgaan van omvang. Vullisverwydering is baie nuttig tydens ontwikkeling as dit verminder foute en hulpmiddels leesbaarheid. Dit is egter dikwels sub-optimale vir sekere hoë frekwensie handel strategieë. Custom vullisverwydering word dikwels verlang vir hierdie gevalle. In Java, byvoorbeeld deur tuning die vullis versamelaar en hoop opset, is dit moontlik om 'n hoë werkverrigting vir HFT strategieë te verkry. C nie die geval bied 'n boorling vullis versamelaar en daarom is dit nodig om al geheuetoekenning / deallocation hanteer as deel van 'n implementering voorwerpe. Terwyl potensieel vatbaar fout (potensieel lei tot hangend wysers) is dit baie nuttig om fyn beheer van hoe voorwerpe verskyn op die hoop vir sekere aansoeke het. By die keuse van 'n taal te verseker om te bestudeer hoe die vullis versamelaar werk en of dit kan verander word om te optimaliseer vir 'n spesifieke gebruik geval. Baie bedrywighede in algoritmiese handel stelsels is vatbaar vir Parallellisatie. Dit verwys na die konsep van die uitvoering van verskeie programmatiese bedrywighede op dieselfde tyd, d. w.z in parallel. Sogenaamde embarassingly parallelle algoritmes sluit stappe wat ten volle onafhanklik van ander stappe kan bereken word. Sekere statistiese bedrywighede, soos Monte Carlo simulasies, is 'n goeie voorbeeld van embarassingly parallelle algoritmes soos elke ewekansige trekking en daaropvolgende operasie pad kan bereken word sonder kennis van ander paaie. Ander algoritmes is slegs gedeeltelik parallelisable. Vloeidinamika simulasies is so 'n voorbeeld, waar die domein van berekening kan onderverdeel, maar uiteindelik hierdie domeine moet met mekaar en sodoende die bedrywighede is gedeeltelik opeenvolgende kommunikeer. Parallelisable algoritmes is onderhewig aan Amdahls wet. wat 'n teoretiese boonste limiet aan die prestasie verhoging van 'n parallelised algoritme toe onderhewig aan N aparte prosesse (bv op 'n CPU kern of draad). Parallellisatie het al hoe belangriker as 'n middel van die optimalisering geword sedert verwerker klok-spoed het gestagneer, soos nuwer verwerkers bevat baie kern waarmee parallel berekeninge uit te voer. Die opkoms van die verbruikers grafiese hardeware (predominently vir die video speletjies) het gelei tot die ontwikkeling van grafiese verwerking van eenhede (GPU), wat honderde kerne vir hoogs konkurrente bedrywighede bevat. Sulke GPU's is nou baie bekostigbaar. Hoë-vlak raamwerke, soos Nvidias CUDA het gelei tot wydverspreide aanvaarding in die akademie en finansies. Sulke GPU hardeware is oor die algemeen slegs geskik vir die navorsing aspek van kwantitatiewe finansies, terwyl ander meer gespesialiseerde hardeware (insluitend veldwerk-programmeerbare Gate Arrays - FPGAs) word gebruik vir (O) HFT. Tans is die meeste moderne langauges ondersteun 'n mate van concurrency / multi-threading. Dit is dus maklik om 'n backtester optimaliseer, aangesien alle berekeninge is oor die algemeen onafhanklik van die ander. Skalering in sagteware-ingenieurswese en bedrywighede verwys na die vermoë van die stelsel om konsekwent te verhoog vragte in die vorm van 'n groter versoeke, hoër gebruik verwerker en meer geheue toekenning te hanteer. In algoritmiese handel strategie is in staat om te skaal as dit groter hoeveelhede kapitaal kan aanvaar en steeds lewer konsekwente opbrengste. Die handel tegnologie stapel skale as dit groter handel volumes en verhoogde latency kan verduur, sonder Bottelnek. Terwyl stelsels moet ontwerp volgens skaal, is dit dikwels moeilik om vooraf te voorspel waar 'n bottelnek sal plaasvind. Die volgende stap is om te bespreek hoe programmeertale algemeen geklassifiseer. Maar dit is met ons algoritme handel strategieë Dit nie die geval moontlik lyk. Een algoritmiese stelsel handel met soveel tendens identifikasie, siklus analise, koop / verkoop kant volume vloei, verskeie handel strategieë, dinamiese inskrywing, teiken en stop pryse, en ultra-vinnige sein tegnologie. Maar dit is. Trouens, AlgoTrades algoritmiese handel stelsel platform is die enigste een van sy soort. Nie meer op soek na warm voorrade, sektore, kommoditeite, indekse, of opinies lees mark. Algotrades doen al die soek, tydsberekening en handel vir jou gebruik van ons algoritmiese handel stelsel. AlgoTrades beproefde strategieë kan met die hand, gevolg deur die ontvangs van e-pos en sms-boodskappe, of dit kan 100 hands-free handel, sy aan jou Jy kan op enige tyd draai op / af outomatiese handel, sodat jy altyd in beheer van jou bestemming wees. Outomatiese handel stelsels vir Savvy Beleggers Kopiereg 2016 - ALGOTRADES - outomatiese Algorithmic Trading System CFTC REËL 4.41 - hipotetiese of gesimuleerde prestasieresultate sekere beperkings. Anders as 'n werklike vertoningslys, MOENIE gesimuleerde uitslae verteenwoordig werklike handel. Ook, omdat Die bedrywe HET NIE uitgevoer, kan die resultate is onder-OF-OOR vergoed vir die impak, indien enige, van SEKERE markfaktore, soos 'n gebrek aan likiditeit. Gesimuleerde TRADING programme in die algemeen ook onderhewig aan die feit dat hulle is ontwerp met die voordeel van agterna. GEEN VERTEENWOORDIGING gemaak DAT ENIGE rekening of waarskynlik om voordeel te trek of verliese soortgelyk aan dié wat ACHIEVE. Geen voorstelling gemaak of geïmpliseer dat die gebruik van die algoritmiese handel stelsel inkomste sal genereer of 'n wins te waarborg. Daar is 'n aansienlike risiko van verlies wat verband hou met termynkontrakte handel en handel beursverhandelde fondse. Futures handel en handel beursverhandelde fondse behels 'n aansienlike risiko van verlies en is nie geskik vir almal. Hierdie resultate is gebaseer op gesimuleerde of hipotetiese prestasie resultate wat sekere inherente beperkings het. In teenstelling met die bedrag wat in 'n werklike prestasie rekord resultate, moenie hierdie resultate nie verteenwoordig werklike handel. Ook, omdat hierdie ambagte het nie eintlik uitgevoer, hierdie resultate kan hê onder-of oor-vergoed vir die impak, indien enige, van sekere mark faktore, soos 'n gebrek aan likiditeit. Gesimuleerde of hipotetiese handel programme in die algemeen is ook onderhewig aan die feit dat hulle is ontwerp met die voordeel van agterna. Geen voorstelling gemaak word dat enige rekening sal of waarskynlik winste of verliese soortgelyk aan dié bereik wat gewys. Inligting op hierdie webwerf is opgestel sonder inagneming van enige spesifieke beleggingsdoelwitte beleggers, finansiële situasie en behoeftes en verder beveel intekenaars om nie op te tree op enige inligting sonder om spesifieke advies van hul finansiële adviseurs nie staatmaak op inligting van die webwerf as die primêre basis vir hul beleggingsbesluite en om hul eie risikoprofiel, risikotoleransie, en hul eie stop verliese te oorweeg. - Aangedryf deur omvou WordPress Tema
No comments:
Post a Comment